

Page: 1 of 19 Publication Date: September 2022

EmSAT Achieve Computer Science- Python
Public Test Specification

Test Description: EmSAT Achieve Computer Science is a 150-minute computerized test that measures

test takers’ level of proficiency in Computer Science and determines their readiness for college. EmSAT

Achieve Computer Science consists of two main Sections: Computer Science Theory and Problem Solving

and Programming Practices. Test sections, questions, and options are randomized and timed by the test

software. The computerized test is a timed test wherein the test clock is visible at all time to test takers.

Task Types Multiple Choice

Test Language English

Calculators Not Allowed

Content Areas Questions Test Duration (minutes)

Section 1:
Computer Science
Theory

1. Computing Systems
and Networks

2. Data Analysis
35 40

Section 2: Problem
Solving and
Programming
Practices

3. Algorithms and
Programming -
Python

65 110

EmSAT Achieve Computer Science

Score Score Descriptors

1500+
High Proficiency: students at this level are well-prepared for Computer
Science courses at the university level.

1100-1475
Proficient: students at this level are at a satisfactory level of preparation to
begin first-year Computer Science courses at the university level.

900-1075
Borderline Proficient: students at this level are minimally prepared for first-
year Computer Science courses at the university level.

700-875
Basic: students at this level do not have sufficient mastery of prerequisite
knowledge for first-year courses in Computer Science at the university level
and may need some additional support.

500-675
Needs Improvement: students at this level need additional instructional
support in basic Computer Science concepts and skills before beginning any
first-year Computer Science courses.

˂ 500
Little Knowledge of General Computer Science: students at this level need
intensive instructional support in basic Computer Science concepts and skills.

Page: 2 of 19 Publication Date: September 2022

EmSAT Achieve Computer Science- Python
Public Test Specification

Appendix 1: Content Areas

Below are the major sections and related content specifications that grade 12 students should be able

to demonstrate mastery of in order to meet the expectations of this test.

Section 1: Computer Science Theory [35%]
This section tests the examinee knowledge in main computer science theory domains such as

computer systems and network, data analysis, and impacts of computing.

1. Computing Systems and Networks [25%]

Examinee should be able to:

a. Identify the hardware components of a given computing system and describe the

function of these components.

b. Differentiate between different types of computing systems software and give

examples on each software type (application software and system software).

c. Demonstrate knowledge of how software control hardware and apply computing

systems troubleshooting strategies on basic hardware and software problems.

d. Design logic circuits and distinguish between the logic gates (AND, OR, NOT,

XOR...etc.)

e. Demonstrate knowledge of the computing trends (e.g., big data, machine learning, AI)

and computing devices (e.g., microcontrollers, embedded systems ...etc.).

f. Differentiate between different network types and recommend suitable network type

for a given scenario.

g. Differentiate between different types of network topologies and recommend suitable

network topology for a given scenario.

h. Identify different network hardware and software and demonstrate knowledge of

their role in the network operation.

i. Demonstrate knowledge of network architecture and task allocation between

network hosts (Client-Server Model and Peer-to-Peer Model).

j. Identify the network security issues and threats and apply the network security

principles in network design.

k. Demonstrate knowledge of network communication layers models and identify each

layer functions and the protocols serving each layer.

l. Identify different types of addresses and explain their role within one network

communication or between different networks communication.

m. Compare guided (wired) and unguided (wireless) transmission media in term of cost,

reliability, and security.

n. Identify the factors that affect the network performance and distinguish between the

different components of nodal delay.

o. Identify security measures designed to protect computer networks and describe

vulnerabilities that the various types of cyber threats can exploit.

Page: 3 of 19 Publication Date: September 2022

2. Data Analysis [10%]

Examinee should be able to:

a. Identify different data collection methods and apply these methods for locating and

collecting a variety of data sets.

b. Analyze and identify patterns in a variety of data sets.

c. Identify different methods to store data and manipulate them and demonstrate

knowledge of issues related to data security.

d. Identify different numbering systems and convert between numbering system to

another.

e. Use the binary numbering system to represent different types of data in computers

such as sound, image and text.

f. Select appropriate representations of data (e.g., charts, graphs, network diagrams,

flowcharts) and use computers to model and simulate different real-life processes and

phenomena.

Page: 4 of 19 Publication Date: September 2022

Section 2: Problem Solving and Programming Practices [65%]
This section tests the examinee knowledge and skills in problem solving techniques and tests whether

the examinee is able to use programming skills as a tool to solve computational problems.

3. Algorithms and Programming [65%]

Examinee should be able to:

a. Break programming specifications into steps and use different algorithm

representations such as pseudocodes and flowcharts to represent algorithms as first

stage before coding.

b. Evaluate and compare algorithms in term of their efficiency, simplicity, complexity,

and clarity and suggest modifications to improve algorithms functionality.

c. Apply the pillars of computational thinking as a process to solve a computational

problem and select appropriate method to a given context.

d. Create different types of variables (data types: integer, double, string...etc.) and

differentiate between variables and constants in term of their roles and manipulation.

e. Distinguish between different operators (arithmetic, logical and relational) and

evaluate simple and compound expressions.

f. Create different static data structures and perform different operations (update,

swap, research...etc.) on them in order to manipulate their elements or extract

information.

g. Read and write data from external data structures such as files and decide when it is

appropriate to use external data structure.

h. Create different dynamic data structures and perform different operations (update,

swap, research...etc.) on them in order to manipulate their elements or extract

information.

i. Program using Procedure-Oriented Programming (POP) and create different types of

functions based on whether they accept arguments and/or return values.

j. Program using Object-Oriented Programming (OOP) and be able to apply the features

of the OOP such as inheritance, encapsulation, abstraction, and polymorphism.

k. Combine sequence steps of instructions in order to achieve a specific task.

l. Distinguish between different selection statements (If Statement, If-Else Statement,

Nested If-Statement, Switch/Case) and select the appropriate selection statement

based on the problem given.

m. Distinguish between different iteration statements (For Loop, While Loop, Do-While

Loop) and select the appropriate iteration statement based on the problem given.

n. Compare and contrast different high-level programming languages and identify the

main components of the programming environment.

o. Combine all programming constructs (sequence, selection, and iteration) and

components (variables, control structures, operators, functions...etc.) together in

order to build a program that meets certain design specifications.

p. Identify different types of programming errors (runtime, syntax and logical) and apply

different testing techniques to ensure program correctness.

q. Apply programming best practices when coding and produce well documented

program that is easy to read, reuse and maintain.

Page: 5 of 19 Publication Date: September 2022

EmSAT Achieve Computer Science- Python

Public Test Specification

Appendix 2: Sample Items

Page: 6 of 19 Publication Date: September 2022

Page: 7 of 19 Publication Date: September 2022

Page: 8 of 19 Publication Date: September 2022

Page: 9 of 19 Publication Date: September 2022

Page: 10 of 19 Publication Date: September 2022

Page: 11 of 19 Publication Date: September 2022

Answer Key:

1. A

2. A

3. A

4. A

5. A

6. A

7. A

8. A

9. A

10. A

11. A

12. A

Page: 12 of 19 Publication Date: September 2022

Appendix 2: EmSAT Pseudocode Guide

Section 1: Variables and Data Types

Action Rule Example

Variable declaration int variable_name
double variable_name
char variable_name
string variable_name

int x
double weight
char vitamin
string name

Variable declaration and initialization data_type variable name  value int x  3
char vitamin  ‘A’
string name  “Wafa”

Passing value to a variable variable  value x  6
name  “Wafa”
vitamin  ‘C’

Incrementing the value of a variable variable  variable +1 x  x+1

Decrementing the value of a variable variable  variable -1 x  x-1

Moving the value of a variable to another variable Variable_2  variable_1 y  x

Section 2: Static and Dynamic Data Strucutres

Data Structure Rule Example

Static 1D
Array

Declaration and
Initialization

data_type array_name []  {element 1, element 2, element N} int grade []  {88, 83, 99}
double temp []  {33.2, 37.1, 39.2}
string name []  {“Wafa”, “Nafla”, “Rola”}

Update

array_name [index] value int grade []  {88, 83, 99}
grade [1] 84 // replace 83 with 84

Search

data_type array_name []  {element 1, element 2, element N}
FOR (int i  0, i<N, i  i+1)

IF (array_name [i] == value)
PRINT “found”

 ELSE
 PRINT “not found”

END IF
END FOR

int grade []  {88, 83, 99}
FOR (int i  0, i<3, i  i+1)

IF (grade [i] == 83)
PRINT “found”

 ELSE
 PRINT “not found”

END IF
END FOR

Swap array_name [index_target] array_name [index_source] int grade []  {88, 83, 99}

Page: 13 of 19 Publication Date: September 2022

grade [1] grade [2] // swap 83 with 99

Static 2D
Array

Declaration and
Initialization

data_type array_name [][]
FOR (int i  1, i<N, i  i+1)

FOR (int j  1, (j<N), j  j+1)
 array_name [i][j] value
 END FOR
END FOR

int 2D_multiplication [][]
FOR (int i  1, i<10, i  i+1)

FOR (int j  1, j<10, j  j+1)
 2D_multiplication [i][j] i*j
 END FOR
END FOR

Update data_type array_name [][]
FOR (int i  1, i<N, i  i+1)

FOR (int j  1, j<N, j  j+1)
 array_name [i][j] value
 END FOR
END FOR

int 2D_multiplication [][]
FOR (int i  1, i<10, i  i+1)

FOR (int j  1, j<10, j  j+1)
 2D_multiplication [i][j] i*j
 END FOR
END FOR

Search data_type array_name [][]
FOR (int i  1, i<N, i  i+1)

FOR (int j  1, j<N, j  j+1)
 IF (array_name [i][j] value)
 PRINT “found”
 ELSE
 PRINT “not found”
 END IF
 END FOR
END FOR

int 2D_multiplication [][]
FOR (int i  1, i<N, i  i+1)

FOR (int j  1, j<N, j  j+1)
 IF (2D_multiplication [i][j] 30)
 PRINT “found”
 ELSE
 PRINT “not found”
 END IF
 END FOR
END FOR

Dynamic
Data
Structure

Stack

Basic Operations

PUSH () − Pushing (storing) an element on the stack.

IF stack isFULL
 RETURN NULL
END IF
Top  top + 1
stack[top]  data

POP () − Removing (accessing) an element from the stack.

IF stack isEMPTY
 RETURN NULL
END IF
data  stack[top]
top  top - 1

Page: 14 of 19 Publication Date: September 2022

Queue Basic
Operations

ENQUEUE () − add (store) an item to the queue.

IF queue isFULL
 RETURN OVERFLOW
END IF
Rear  rear + 1
queue[rear]  data

DEQUEUE () − remove (access) an item from the queue.

IF queue isEMPTY
 RETURN UNDERFLOW
END IF
data  queue[front]
front  front + 1

Linked List Insertion
Operation

NewNode.Next → RightNode
LeftNode.Next → NewNode

Deletion
Operation

LeftNode.Next → TargetNode.Next
TargetNode.Next → NULL

Page: 15 of 19 Publication Date: September 2022

Section 3: Operators and Expressions

Operator Rule Example

Arithmetic +, - , *, %, /, ^
Note: / indicates floating point division unless stated otherwise

int r
formula  2*PI*r^2

Relational >, <, ==, ≠, ≤, ≥, int value_1
int value_2
READ value_1, value_2
IF (value_1 > value_2)
 PRINT “value_1 is bigger than value_2”
ELSE
 PRINT “value_1 is smaller than value_2”
END IF

Logical AND, OR, NOT int x
READ x
IF (x ≠ 0 and x>0) // print the value if its zero or positive

PRINT x
ELSE

PRINT “entry is negative”
END IF

Section 4: Iteration

Loop Rule Example
While Loop counter initialization

WHILE (condition)
 statement/s
 increment counter
END WHILE

int value 1
WHILE (value ≠ 6)
 PRINT value
 value  value+1
END WHILE

Do while counter initialization
DO

statement/s
increment counter

WHILE (condition)

int i  1
DO

PRINT “Hello World!”
i  i+1

WHILE (i<10)

For Loop FOR (initialization, (condition), increment)

 statement/s
END FOR

FOR (int i  0; (i <10); i  i+1)
 PRINT i
END FOR

Page: 16 of 19 Publication Date: September 2022

Nested For Loop FOR (initialization, (condition), increment)
FOR (initialization, (condition), increment)

 statement/s
 END FOR
END FOR

FOR (int i  1, (i<10), i  i+1)
FOR (int j  1, (j<10), j  j+1)

 PRINT i+j
 END FOR
END FOR

Section 5: Selection

Selection Rule Example

If Statement IF (condition)
 statement/s
END IF

int value
READ value
IF (value ≠ 0)
 PRINT value
END IF

If Else Statement IF (condition)
 statement/s
ELSE
 statement/s
END IF

int value_1
int value_2
READ value_1
READ value_2
IF (value_1 > value_2)
 PRINT “value_1 is bigger than value_2”
ELSE
 PRINT “value_1 is smaller than value_2”
END IF

Nested If
Statement

IF (condition)
 statement/s
ELSE
 IF (condition)
 statement/s
 ELSE
 IF (condition)
 statement/s
 ELSE
 statement/s
 END IF
 END IF
END IF

int grade
READ grade
IF (grade ≥ 90)

PRINT “grade is A”
ELSE
 IF (grade ≥ 80)
 PRINT “grade is B”
 ELSE
 IF (grade ≥ 70)
 PRINT “grade is C
 ELSE
 PRINT “grade is F”
 END IF
 END IF

END IF

Page: 17 of 19 Publication Date: September 2022

Switch data_type value
READ value
 CASE 1: (condition 1)
 statement/s
 CASE 2: (condition 2)
 statement/s
 CASE 3: (condition 3)
 statement/s
 CASE N: (condition N)
 statement/s
 DEFAULT
 statement/s
END CASE

int grade
READ grade
 CASE 1: (grade ≥ 100)
 PRINT “perfect score”
 CASE 2: (grade > 89)
 PRINT “grade is A”
 CASE 3: (grade > 79)
 PRINT “grade is B”
 CASE 4: (grade > 69)
 PRINT “grade is C”
 CASE 5: (grade > 59)
 PRINT “grade is D”
 DEFAULT
 PRINT “grade is F”
END CASE

Section 5: Procedure-Oriented Programming

Function Body Rule Example

returns arguments

x x void FUNCTION function_name ()
 statement/s
END FUNCTION function_name

void FUNCTION greetings ()
 PRINT “Hello”
END FUNCTION greetings

x √ void FUNCTION function_name (arg1, arg2….)
 statement/s
END FUNCTION function_name

void FUNCTION greetings (customer_name)
 PRINT “Hello, customer_name”
END FUNCTION greetings

√ x data_type FUNCTION function_name ()
 statement/s
 RETURN value
END FUNCTION function_name

string FUNCTION myname ()
 name  “Wafa”
 RETURN name
END FUNCTION myname

√ √ data_type FUNCTION function_name (arg1, arg2…)
 statement/s
 RETURN value
END FUNCTION function_name

int FUNCTION multiplication (value_1, value_2)
 result  value_1 * value_2
 RETURN result
END FUNCTION multiplication

Function Call Rule Example

returns arguments

x x function_name () greetings ()

x √ function_name (arg1, arg2, argN) greetings (Wafa)

Page: 18 of 19 Publication Date: September 2022

√ x function_name () myname ()

√ √ function_name (arg1, arg2, argN) multiplication (10, 3)

Section 6: Object-Oriented Programming

Actions Rule Example

Class declaration CLASS class_name
variable declarations
functions

END CLASS class_name

CLASS student
string name
double GPA
int Grade
void register ()
void drop ()

END CLASS student

Object Creation Object_name class_name std1 student

Section 7: Others

Boolean TRUE, FALSE

Null NULL

Comments // type the comments here

Placeholder for missing code /* missing code */
/* condition */

Keywords READ
RETURN
PRINT
DEFAULT
SIZE
LENGTH
CASE
PI
Void
BREAK
TRUE
FALSE

Page: 19 of 19 Publication Date: September 2022

WRITE
SQUARE

Data Types int
double
char
string
float

